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ABSTRACT 

Dimension subgroups in characteristic p are employed in the study of the power 
structure of finite p-groups. We show, e.g., that if G is a p-group of class c (p odd) 
and k = I-!ogp((c + 1)/(p - 1)) 7 , then, for all i, any product ofpi+kth powers 
in G is ap' th power. This sharpens a previous result of A. Mann. Examples are 
constructed in order to show that our constant k is quite often the best possible, 
and in any case cannot be reduced by more than 1. 

1. Introduction 

Dimension subgroups over fields of  characteristic p ,  introduced by R. Brauer, 

H. Zassenhaus and S. A. Jennings in the late thirties, were used by the last in the 

study of  the Loewy-structure of  modular p-group algebras K G  (also referred to as 

local group algebras) [J]. An explicit expression for the dimension subgroup 

Dm = G N (1 + A m) (where A denotes the augmentat ion ideal) was subsequently 

derived by Lazard [L]. Passi and Sehgal [PS2] studied the Lie dimension subgroups 

D(m) = G N (1 + A(m)), where _(m) denotes Lie-powers. They were able to give 

a group-theoretic description somewhat analogous to that  of  Lazard.  Since then, 

dimension subgroups have proved useful in various interesting and seemingly un- 

related contexts: the isomorphism problem for local group algebras (e.g., Passi and 

Sehgal, 1972 [PS1]; R6hl, 1989 [R]), the class of  nilpotent wreath products (Shield, 

1977 [Shi]), unipotent representations of  nilpotent groups (Wehrfritz, 1987 [W]), 

Frobenius-Wielandt complements (Scoppola [Sc]), numbers of  generators of  ideals 
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in local group algebras (Shalev [Shl]), the Lie-structure of local group algebras and 

the structure of their unit groups (Shalev [Sh2]). The applicability of dimension 

subgroups to the study of transitive permutation modules for p-groups has recently 

been pointed out by Alperin [A]. Another context in which dimension subgroups 

(and the restricted Lie algebras they give rise to) play some role is the restricted 

Burnside problem, recently solved by Zelmanov. 

Although dimension subgroups were primarily considered as a tool in the study 

of some ring-theoretic aspects of group algebras, it is now clear that they have 

some pure group-theoretic applications as well. In this paper we describe some of 

their applications to the power structure of p-groups. In fact, for some purposes 

we find it convenient to use a certain double-indexed series {Dm.k}, introduced in 

[Shl], which includes ordinary dimension subgroups and Lie dimension subgroups 

as particular cases. For a general background on the power structure of p-groups, 

the reader is referred to [Hu, Chap. III], [M1], [M2]. 

In order to describe our main results we need some notation. 

Throughout this paper, G denotes a finite p-group, and ['rj }j->l stands for its 

lower central series. For i ___ 0 let U i = ( x p i : x  E G)-- the  subgroup generated 

by the pith powers. Define (Jti~ (i ___ 0) inductively, by Oto) = G, tJti) = O1 ((Jti-1)) 

(i > 1). Obviously, 

O(i) D_ Oi D [xp~: x E G] (the set of pith powers) 

and both inclusions may be proper. 

It is well known that, for a regular p-group, these three notions coincide ([Ha]; 

see also [Hu, Chap. III, Sec. 10]). A similar phenomenon holds for powerful 

p-groups, as shown by Lubotzky and Mann in [LM]. In fact, it follows from 

JAr, Theorem 2 & Corollary 2.1] that this remains true under the weaker condition 

~/a --< O1 for some a < p. The following theorem generalizes this phenomenon. 

TrlEOREMA. Let  m = ap ~-1, where a < p and  ot >_ 1. Suppose  G is a p -group  

satisfying On = Dm+l. Then Oti) = Ui = [xP': x E G} f o r  all i > or. 

Note that, since Da = 3,a'Ol for a < p, Arganbright's result is obtained from 

our theorem by substituting ot = 1. 

COROLLARY AI [Shl, Theorem 2.2]. A n y  group G o f  order p n satisfies O t i )=  

Oi = [xP': x E G] f o r  any integer i >_ (n - 1) / (p  - 1). 

Indeed, by a simple counting argument, we must have D m = O m + l  for some 
m = a p  ~-1, where 1 < a < p a n d u <  r ' ( n -  1 ) / ( p -  1) ~. 

In the following theorem, referring to problem 4 in [M1], the nilpotency class 
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of  G is taken into account. According to a result of A. Mann quoted in [M1, 

Sec. 1], if G is of  class c and k = [(c - t ) / ( p  - 1)], then any product o fp i+k th  

powers is a p i t h  power, i.e. Oi+k C_ [xP': X E G}. Here we improve this by reduc- 

ing k to rlogp((C + 1 ) / ( p  - 1)) 7 , and replacing Oi+k by O(i+k). 

However, we assume that p is odd. 

THEOREM B. Let G be a p-group of  class c (p  odd), and let k be the minimal 

integer such that c < (p  - 1)pk. 

Then O(i+k ) ~ [xP': X E G} for  all i > O. 

Finally, we claim that our constant k is the best possible for most values of  c, 

and in any case cannot be reduced by more than 1. The proof  is based on the de- 

tailed description of  the factors D,, (F)/Dm+~ (F),  where F is a (finitely generated) 

free group, given in [Sc]. 

THEOREM C. For every positive integer k there exists a p-group G of  class c = 

pk+ 1, in which Ol +k ~ [ xP: x E G }; in fact, i f  F is the free group on two genera- 

tors, then G = F/Dpk+~+l (F) would be as required. 

Some words on the structure of  this paper: 

In section 2 we discuss dimension subgroups, and set up the machinery required 

in the proofs of  Theorems A and B; these results are then derived in section 3, 

while section 4 is devoted to the proof  of  Theorem C. 

Let us now introduce some additional notations. Group commutators are de- 

noted by [ , ], and long commutators are interpreted using the left-normed con- 

vention. We define [x,y;n] inductively by [x,y;0] = x ,  [x,y;n + 1] = [[x,y;n] ,y] 

(n >_ 0). An Np-series in a group G is a descending series of  normal subgroups 

[Hm}m>_l , satisfying [Hm,Hn] <__ Hm+n and O1 (Hm) < Hpm for all m,n.  It is well 

known (see, e.g., [P, Chap. 3]) that {Dm} is an Np-series. For a real number x, 

denote by [x] ( r'x-1 ) the maximal (minimal) integer which is not greater (smaller) 

than x. 

2. Dimension subgroups; the series {Din, k} 

The detailed study of  dimension subgroups in characteristic p seems to require 

the definition of  a somewhat more general notion (see [Shl,Sh2]). 

DEFINITION 2.1. For integers m _> 1 and k _> 0 put 

Dm, k= I I  UA'yj+k). 
jpi>_m 
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Define non-negative integers arm, k by 

pdm.k = (Dm,k:Dm+l,k). 

Lazard's formula for the dimension subgroups Dm is obtained by substituting k = 

0 in the definition of  Dm, k, i.e. D m =  D,,,,o (m >_ 1), whereas Passi and SehgaI's 

expression for the Lie dimension subgroup may be formulated by D(m+I) = Om,1 

(m _ 1). It is straightforward to verify (e.g., using [P1, Corollary 1.18, p. 42]) 

that, fixing k, [Dm, kbr,,>_l) is an Np-series. Moreover, this sequence can be shown 

to be the minimal Np-series starting with Vk+l, which is central in G. 

The following technical notation will be needed in the sequel. 

DEFINITION 2.2. (1) For integers m ___ 1 and k, v __ 0 put 

< u  
Om,k 1"~ Oi('Yj+k); >v= = Dm, k ~-[ (Ji('Yj+k). 

i<v i>v 
jpi>m jpi>rn 

(2) For a prime p and a positive integer m, denote by Vp (m)  the maximal in- 

teger v such that pV divides m; let (re)p, be the maximal divisor of  m which is 

prime to p, i.e. (re)p, = m /p  ~ where v = Vp(m). 

The following theorems summarize the basic properties of  the series Dm, k. 

THEOREM 2.3. (1) Dm,k+l = [G, Dm,k] [Shl, Proposition 1.2]. 

(2) dm, k = 0 implies dm,h = O for  every h > k. 

Note that part (2) follows immediately from (1). Indeed, 

dm, k = 0 ~ Din, k = Dm+l,k ~ [G, Dm, k] = [G, Dm+l,k] 

Dm.k+l = Dm+l,k+l ~ dm,k+l = 0, 

which yields (2) by induction. 

Let us now fix k > 0, and study the series {Dm, klm>_l and the associated series 

Idm,~}m>_l. 
As indicated in [Sh2], these series are subject to various constraints, similar to 

those derived in [Shl, Sec. 1] for k = 0, and in [Sh2, Sec. 4] for k = 1. Some re- 

lated results for the case k = 0 were obtained independently by Leedham-Green and 

Staszewski in [LS]. 

TrmOREM 2.4. Suppose exp('vk+l) = pe, and let m > 1. Then 

(1) [ f  pe-I  divides m, then Dm+l,, = [ G, Dm, k]; consequently, dm, k = 0  implies 

Dm, k = 1. 
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(2) I f  m is a p o w e r  o f  p,  then D,,,+l,k = [G,D,,,k] "01(Dm,,); consequent ly  

dm,k = 0 implies Dm, k = 1. 

THEOR.~M 2.5. Suppose  dm,,  = 0 and  let n >_ m.  Then 

(1) D,,,k = O1 (D%/pT,k). 

(2) D ~  <_ [ G , D , , e ] ,  where v = Vp(m).  

(3) Dn k -  >v Vp(m). • -- Dn,  k,  where v = 

(4) (n)p, > (re)p, implies dn,k = O. 

(5) d,,k <- dr,/pT,k. 

We omit most proofs, as they are essentially identical to those given in [Shl, Sh2] 

for k = 0,1. However, as part (5) of  Theorem 2.5 for k = 0 is evidently stronger 

than the parallel result given in [Shl, Theorem 1.12], it requires a separate proof. 

The proof  which we now give relies on [Sc]. 

First observe that, if n is prime to p, then (n)p, = n > m > (m)p, .  Hence, by 

part (4) we have d,,k = 0, so (5) follows. Therefore we may assume n = pr ,  for 

some positive integer r. 

The idea is now to show that the map x ~ x p induces an epimorphism ,p: 

Dr, k/Dr+l,k -* Dpr, k/Dpr+l,k. The fact that ~ is well-defined follows directly from 

P. Hall's collection formula and the fact that {Dm, k}m_>l is an Np-series (see [Shl, 

Theorem 1.12] for details). Furthermore, since dm, k = O, we get by 2.5(1) Dpr, k = 

O1 (Dr, k). Hence, if ~ is a homomorphism, it must be surjective. So we only have 

to show that ~ is a homomorphism. 

Pick x , y  E Dr, k and write 

( x Y )  p ~ x P Y P  m o d  Ul (Dr .k )  "yp (Dr ,  k ) .  

It is sufficient to show that the right-hand terms are contained in Dpr+l,k. Clearly, 

U 1 (D~,k)  <-~ U 1 (D2r, k ) <~ D2pr, k <-~ Dpr+l ,k  , SO we are left with the second term. So 
consider the commutator of  p typical factors in the definition of  Dr, k, namely 

[Ui! (~ j l+k)  . . . . .  Uip("Yjp+k)], where j l p  il . . . . .  jppip > r. 

We have to show that it lies in Dpr+l,k. Lemma 1.2 of  [Sc] may be applied in or- 

der to express this commutator as a product of  certain terms of  the kind Oi('yj). 

Note that, since dm, k = O, we get by 2.5(2) "Ypr+k = D~r°k <- [G, Dpr, k] < Dpr+l,k. 

Taking this into account, the result follows form [Sc, Lemma 1.2] by a straight- 

forward calculation. 

Theorem 2.5(3) provides us with shortened expressions for the groups D,,k, 

provided some of  the terms dm, k vanish. Perhaps the simplest phenomenon is 
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EXAMPLE 2.6. Let m = ap ~-~, where a < p. Suppose dm,k = 0, and let n = 

ap i-1, where i _> ~. Then, by Theorem 2.5(4), we have dn, k = 0. Applying 2.5(3) 

we conclude that Dn, k = D ~  i-O = 0i(~/~+1). 

Although the following result deals with ordinary dimension subgroups Dra, its 

proof  is based on the properties of  the more general series Dm, k. We denote dm,o 

by tim. The value of  dm in a subgroup H o f  G will be denoted by dm(H).  

PROPOSITION 2.7. Let k > 1 and let H be a subgroup of  G satisfying 

(1) H _> 7k, 

(2) H '  <_ 7k+1. 

Let m be a positive integer with (re)p, < p. Then din(G) = 0 implies dm(H) = O. 

PROOF. Write m = ap i-1. If a = 1 then Dm= 1 by 2.4(2), and the result is 

clear. So assume a >_ 2. Note that dm= 0 implies d,n,k = 0 for all k >_ 0, by 2.3(2). 

Example 2.6 now yields Dm, k = Oi(Tk+l) for all k. Clearly condition (2) implies 

7j (H)  <- 7j+k-X for all j _> 2. Substitution in Lazard's formula for Dm(H) gives 

DIn(H) <- Oi(H)Dm,k-1. But Din, k-1 = O/(Tk) <- Oi(H) by condition (1). There- 

fore DIn(H) <- Oi(H) <- Dp,(H) <_ Dm+1(H), SO that DIn(H) = Dm+I(H) and 

din(H) = O, as required. • 

COROLLARY 2.8. Suppose (re)p, < p and dm= O. Let H be a subgroup of  G 

satisfying either 

(1) H = <Tk,X) for some k > 1 and x E G, 
or 

(2) 72k-1 -- H_< 7k. 

Then din(H) = O. 

Since, assuming p > 2, d2(H) = 0 is equivalent to H being powerful, this result 

generalizes [LM, Corollary 1.2(b)], stating that, for odd p,  if G is powerful, and 

for some k > 1 we have 7k+~ ----- H _< 7k, then H is powerful. 

3. Proof  of  Theorems A and B 

The following phenomenon, which is well known for regular p-groups, is proved 

here in a different context. 

LEM~'m3.1. Let m = ap ~-1 where a < p, and suppose dra = O. Then 

[G, Oi(Tk)] = Oi(Tk+l) for  all i >_ a and k >_ 1. 

PROOF. Consider first the case i = cx. Since dm= 0, we must have dm,k = 0 for 

all k _> 0 (by Theorem 2.3(2)). Example 2.6 shows now that Dm, k = Oi (7k+1) for 
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all k. Applying Theorem 2.3(1) we conclude that [G, Oi('~k)] = [G, Dm.,_~] = 

Dm, I¢ = { J i ( ' Y k + l ) "  

The general case is now proved by replacing m with n = ap g-l, and observing 

that (In = 0 (by Theorem 2.5(4)). • 

This lemma extends similar results proved in [LM] for powerful p-groups. 

We can now prove Theorem A. 

So assume m = ap '~-1, a < p ,  and dm= 0. First observe that, since [Din] is an 

Np-series starting with G, it follows that O(o _ Dpi for every i >_ 0. Hence it is suf- 

ficient to verify that, for i _> or, every element of Dpi is a p i t h  power. Replacing m 

by n = mp i-'~ if necessary, we may assume o~ = i. The proof is by induction on 

Jcl. 
Obviously, we may assume that G is non-cyclic. 

By Theorem 2.5(3) we have Dpi = D~ (i-l) = Oi. So it remains to be shown that 

every element in Og is of the form x p~ for some x. By P. Hall's collection formula 

i 

(xY) pi ---- xPiypimodOg( G')  1"~ Oi-r(Tpr) • 
r = l  

(1) 

Observe that 

(2) 
i 

= D ; ,  
r = l  

Apply Theorem 2.5(2) to conclude that 

(3) D ~  (i-l) < [O, Dpi] = [G, Oi]. 

But by Lemma 3.1 (with k = 1) we have 

(4) [G, Oi] = O~(G'). 

Combining (1)-(4) we obtain 

i i i 
(5) (xy) p ~ X p yP modlJ i (G' ) .  

It follows that, for every g in Og, there exists x in G such that 

(6) g E x p' .Oi(G')  < Oi(H) < Dpi(H) ,  where H = (G ' , x ) .  

Now, H is a proper subgroup of G. Moreover, it clearly satisfies condition (1) of 

Corollary 2.8. Hence the property dm = 0 is inherited by H from G, i.e. dm(H) = 

0. By induction hypothesis for H,  every element of Dpi(H) is a p i th  power. In 

particular, g = h pi for some h E H. 
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This terminates the proof  of  Theorem A. 

We now formulate Lemma 1.5 of  [Sc], in the particular case required here. Ob- 

serve that, since {Din} is an N:se r i e s ,  we clearly have ~/s(Dm) <- Dsm. It turns out 

that,  in certain circumstances, much more can be said. 

LEMMA 3.2 [Sc, Lemma 1.5]. Let m,s  be positive integers with s >_ 2. Put n = 

p (  rm/p-1 + (s - 1)m).  Then "ys(Dm) <_ "tsmD,. 

Since 1 + p ( s  - 1) _> s + 1 for s ___ 2, we obtain 

COROLLARY 3.3. I f  s >_ 2 and ~sm = 1, then ~s(Dm) <- D(s+l)m. 

Let us now prove Theorem B. 

The condition on the class of  G ensures that 3'm = 1 for m = (p  - 1)p k. Since 

m + 1 is prime to p and 3'm+1 = 1, it follows immediately f rom Lazard 's  formula  

that Dm+l = Dm÷2, i.e. dm+~ = 0. Applying Theorem 2.5(1) we conclude that 

(7) Dp~+, = {Jl (Dpk). 

By Corollary 3.3 with m = pk  and s = p - 1 we obtain 

(8) ~/p-i (Dpk) <_ Dpk+, 

(recall that p is odd). Combining (7) and (8) we get 

(9) ,yp_~ (D.k) <_ (J~ (Dpk). 

Set H = Dpk. Then (9) implies dp-i ( H )  = 0. Therefore Theorem A may be ap- 

plied, to conclude that 

(10) Ofi)(H) = IhP': h E H }  

for  all i > 0. As we have already noted, O(~)(G) <_ Dp~ = H. Hence 

(II) IJ(i+k)(G) <- (J(i)(H). 

The desired conclusion follows now from (I0) and (I I). 

4. Proof of Theorem C 

The proof of Theorem C rests on the study of the power-commutator structure 

of free groups, with respect to their modular dimension subgroups Din. 
The following standard result, holding in arbitrary groups G, reflects the fact 

that ~)D,.,/Dm+~ has the structure of a restricted Lie algebra over Fp, induced by 
the commutator and the pth power operations in G (see [Z] and [L] for details). 
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LEMMA 4.1. Let u E Din, vi E Dni for 0 < i <_ s. Then 

pk 
[U, Vo ,Vl . . . . .  vs] = [[U, vo;P~],vl . . . . .  vs] (modDn+l) ,  

where n = m +nop k + ~,,s= l n i. 

Throughout  the rest of  this section, we will assume our reader is familiar with 

P. Hall's commutator collecting process, and with M. Hall's theory of  basic com- 

mutators, as presented, for instance, in [H] or in [Sc]. 

From now on let F denote the free group on two generators x,y. Set Dm = 

DIn(F) and % = ~ , ( F )  (m,n >_ 1). 

LEMMA 4.2 [Sc, Lemma 2.3]. Let k be the exponent of the commutator [y,x,y; 

p - 2] in P. Hall's expansion oftheproduct (xy) p. Then k - - l ( m o d p ) .  

We also need the following fairly standard result (which may be established, e.g., 

using the method of  [MW]). 

L~rau_a 4.3. The images in ~/,~+n/~/m+n+l of the basic commutators in x ,y  of  

partial weights m,n, respectively, form a basis for the free abelian group generated 

by the images of all the commutators of partial weights m, n in "Ym+n/')/m+n+l . 

We now turn to the main part of  our analysis. 

LEMMA 4.4 [Sc, Lemma 1.10]. Let u E Dm\Dm+l. Then u pk E Dpk,nkDpkm+l. 

The following description of  a basis for Opm/Dpm+l in terms of  a basis for 

Dm/Dm+~ is extremely useful for our purpose. 

LEMMA 4.5 [Sc, Lemma 1.11]. A set of  representatives of  a basis of  

Opm/Opm+l is given by the union of the set of the basic commutators of  weight 

pm with the set of  the pth powers of  the representatives of  a basis of  Om/Dm+l. 

COROLLARY 4.6. The map x ~ x p induces an isomorphism #m "Om/Dm+l --* 

Dpm/vpmOpm+l. 

PROOF. It is well known (see, e.g., [Shl], or the proof  of  Theorem 2.5 above) 

that x ~ x p induces a well-defined map from Dm/Dm+l to Opm/Opm+l, so //'m is 

the composition of  this map with the canonical projection Dp~/Dp~+~ --, Dp~/ 

"~pmDpm+l . Using P. Hall's collection formula for (xy) p and Corollary 3.2 (with 

s = p) ,  we see that/.t m is actually a homomorphism. Now, since the images in 

Opm/Dpm+l of the basic commutators of weight pm generate "ypmDpm+l/Dpm+l , it 

follows from Lemma 4.5 above that #,, maps any basis of Dm/Dm+~ to a basis of  

Opra/'gpmDpm+l. Hence/~,~ is an isomorphism. • 
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It is noteworthy that results 4.4-4.6 hold in fact for arbitrary flee groups. 

We now turn to the proof  of  Theorem C. 

Let F b e  as before, and let G = F/Dpk+,+l. 
G is clearly a finite p-group of  class pk+l. We will identify elements of  F (e.g., 

x ,y)  with their images in G. This will not cause confusion, since we are not going 

to work in F any more. 

Consider the element z = xPk+~y pk÷l E Ok+l (G) <- Dpk+~ (G). We claim that z 

is not a p th  power. 

By way of  contradiction, assume that z = w p for some w E G. 

Then w p E Dpk÷~ (G)\Dpk+~+l (G),  so Lemma 4.4 (applied for F)  easily im- 

plies w E Dp~(G)kDpk+l (G). 
Define t~ = G/,,/pk+~ (G) = F/')/pk+lDpk+l+l, and use the --notation consistently. 

Set m = pk, and let # = #m be the isomorphism from Dm/Dm+l to Dum/ 

"YpmDpm+l defined in Corollary 4.6. Then/~ may be identified, in a natural way, 

with the map from Dp~(G)/Dpk+l(G) to Dpk+~((-~), induced by taking p t h  

powers. 

Since/~ is a homomorphism, we clearly have 

~(~pk ~pk Vpk + 1 ( ~ ) )  : ~pk+l ~pk+l = ~ : t.~( ~Dpk +l ( ~)) 

and by the injectivity of  #, W -- xpkf~Pk(mod Dpk+l(G)), which implies w -= 

xPkypk(modDpk+l (G)). Since the value of w p depends only on the image of w in 

Dpk(G)/Dpk+l(G),  this allows us to assume that w = xPky pk. 

Let us now apply P. Hall's collection process in order to compute w ' .  

Write w p = xP~+lyPk+lP, where P is a product of basic commutators of  weight 

p in xPk,y pk (all the other factors are easily seen to be trivial). Among these there 

is only one basic commutator  of  weight 1 in x pk, namely [yPk,x 'k ,yPk;p  -- 2], 

and, by Lemma 4.2, it appears in this expansion with exponent - 1 .  

Apply Lemma 4.1 to conclude that, in G, 

[ y P k , x P k , y p k ; p -  2] : [ [y ,x ;pg] ,y ;p  k+j -- 1]. 

All the other factors appearing in P may be written (using 4.1) as commutators of  

total weight pk+~ in x and y, whose partial weight in x is at least 2p k. 

Therefore, by Lemma 4.3, 

(12) w p = x P k + l y p  k+l [[y ,x;pt]  ,y;pk+l _ 1] -1Q 

where Q is a product of  basic commutators of  total weight pk+~ in x and y, whose 

partial weight in x is at least 2p k. 

Equation (12) expresses w p (regarded as an element of  Dpk+l/Dp,~+l+l 
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Dpk+l (G) )  in terms of a basis of the type given in Lemma 4.5. This expression is 
unique, so, in particular, w p =/: xPk+Iy pk+~ . 

This contradiction concludes the proof of Theorem C. 

REMARK. While this paper was written, R. Dark pointed out to the authors that 

the example G of Theorem C can be obtained as a subgroup of the group of units 

in the truncated free algebra on two noncommutative variables (see [HB, p. 265, 

Exercise 3]). While Dark's approach yields a shorter proof for Theorem C, our 

method seems to give a somewhat deeper insight into the power-commutator struc- 

ture of G. 
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