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ABSTRACT
Dimension subgroups in characteristic p are employed in the study of the power
structure of finite p-groups. We show, e.g., that if G is a p-group of class ¢ (p odd)
and k = r—logp (c+ 1)/ (p~ 1)), then, for all , any product of p**th powers
in G is a p’th power. This sharpens a previous result of A. Mann. Examples are
constructed in order to show that our constant X is quite often the best possible,
and in any case cannot be reduced by more than 1.

1. Introduction

Dimension subgroups over fields of characteristic p, introduced by R. Brauer,
H. Zassenhaus and S. A. Jennings in the late thirties, were used by the last in the
study of the Loewy-structure of modular p-group algebras KG (also referred to as
local group algebras) [J]. An explicit expression for the dimension subgroup
D, =GN (1+ A™) (where A denotes the augmentation ideal) was subsequently
derived by Lazard [L]. Passi and Sehgal [PS2] studied the Lie dimension subgroups
Dy =GN (1 + A), where _™ denotes Lie-powers. They were able to give
a group-theoretic description somewhat analogous to that of Lazard. Since then,
dimension subgroups have proved useful in various interesting and seemingly un-
related contexts: the isomorphism problem for local group algebras (e.g., Passi and
Sehgal, 1972 [PS1]; Rohl, 1989 [R]), the class of nilpotent wreath products (Shield,
1977 [Shi}), unipotent representations of nilpotent groups (Wehrfritz, 1987 [W]),
Frobenius-Wielandt complements (Scoppola [Sc]), numbers of generators of ideals
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in local group algebras (Shalev [Sh1]), the Lie-structure of local group algebras and
the structure of their unit groups (Shalev [Sh2]). The applicability of dimension
subgroups to the study of transitive permutation modules for p-groups has recently
been pointed out by Alperin [A]. Another context in which dimension subgroups
(and the restricted Lie algebras they give rise to) play some role is the restricted
Burnside probiem, recently solved by Zelmanov.

Although dimension subgroups were primarily considered as a tool in the study
of some ring-theoretic aspects of group algebras, it is now clear that they have
some pure group-theoretic applications as well. In this paper we describe some of
their applications to the power structure of p-groups. In fact, for some purposes
we find it convenient to use a certain double-indexed series {D,, x}, introduced in
[Sh1}, which includes ordinary dimension subgroups and Lie dimension subgroups
as particular cases. For a general background on the power structure of p-groups,
the reader is referred to [Hu, Chap. III], (M1], [M2].

in order to describe our main results we need some notation.

Throughout this paper, G denotes a finite p-group, and {v;};>, stands for its
lower central series. For i = 0 let U; = (xP'ix € G) —the subgroup generated
by the p’th powers. Define U, (/ = 0) inductively, by U = G, Uy, = U (Ui—yy)
(i = 1). Obviously,

Uy20;2 [x”i: x € G} (the set of p‘th powers)

and both inclusions may be proper.

It is well known that, for a regular p-group, these three notions coincide ([Ha];
see also [Hu, Chap. III, Sec. 10]). A similar phenomenon holds for powerful
p-groups, as shown by Lubotzky and Mann in [LM]. In fact, it follows from
[Ar, Theorem 2 & Corollary 2.1] that this remains true under the weaker condition
e < U, for some a < p. The following theorem generalizes this phenomenon.

THEOREM A. Let m = ap®~!, where a < p and o = 1. Suppose G is a p-group
satisfying D, = Dy,,,. Then U;, =U; = (xP': xE G) foralli= a.

Note that, since D, = v,-U, for a < p, Arganbright’s result is obtained from
our theorem by substituting o = 1.

CoROLLARY Al [Shl, Theorem 2.2). Any group G of order p" satisfies U;, =
U; = (x?": x € G} for any integer i = (n — 1)/(p — 1).

Indeed, by a simple counting argument, we must have D,, = D,,, for some
m=ap* ', wherel<a<panda<"(n-1)/(p-1)".
In the following theorem, referring to problem 4 in [M1], the nilpotency class
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of G is taken into account. According to a result of A. Mann quoted in [M1,
Sec. 1], if G is of class ¢ and k = [(¢ — 1)/(p — 1)], then any product of p+Xth
powers is a p‘th power, i.e. U, € [x”i: x € G}. Here we improve this by reduc-
ing k to I_log,,((c +1)/(p — 1)), and replacing U, by Uik -

However, we assume that p is odd.

THEOREM B. Let G be a p-group of class ¢(p odd), and let k be the minimal
integer such that ¢ < (p — 1) p*.
Then U, py © {(x?':x € G} foralli>0.

Finally, we claim that our constant k is the best possible for most values of c,
and in any case cannot be reduced by more than 1. The proof is based on the de-
tailed description of the factors D,,(F)/D,,,,(F), where F is a (finitely generated)
free group, given in [Sc].

THEOREM C. For every positive integer k there exists a p-group G of class ¢ =
p**Y, in which U € {xP: x € G}; in fact, if F is the free group on two genera-
tors, then G = F/D,k+1,(F) would be as required.

Some words on the structure of this paper:

In section 2 we discuss dimension subgroups, and set up the machinery required
in the proofs of Theorems A and B; these results are then derived in section 3,
while section 4 is devoted to the proof of Theorem C.

Let us now introduce some additional notations. Group commutators are de-
noted by [ , ], and long commutators are interpreted using the left-normed con-
vention. We define [x, y;n] inductively by [x,y;0] =x, [x,y;n+ 11 = [[x,y;n],¥]
(n = 0). An N,-series in a group G is a descending series of normal subgroups
{H,)n=1, satisfying [H,,,H,) < H,,,, and U, (H,,) < H,, for all m,n. It is well
known (see, e.g., [P, Chap. 3]) that {D,,} is an N,-series. For a real number x,
denote by [x] ("x ') the maximal (minimal) integer which is not greater (smaller)
than x.

2. Dimension subgroups; the series {D,, .}

The detailed study of dimension subgroups in characteristic p seems to require
the definition of a somewhat more general notion (see [Sh1,Sh2]).

DEerFiNiTION 2.1, For integers m = 1 and k = 0 put

D= TI Ui(vje)-

jpizm
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Define non-negative integers d,, 4 by

pdm’k = (Dm,k : Dm+1,k) .

Lazard’s formula for the dimension subgroups D,, is obtained by substituting k =
0 in the definition of D,, 4, i.e. D,, = D, o (m = 1), whereas Passi and Sehgal’s
expression for the Lie dimension subgroup may be formulated by D 41y = Dy 1
(m = 1). It is straightforward to verify (e.g., using [P1, Corollary 1.18, p. 42])
that, fixing k, { D, x}(m=1) 15 an IV,-series. Moreover, this sequence can be shown
to be the minimal N,-series starting with v, which is central in G.

The following technical notation will be needed in the sequel.

DEermNITION 2.2. (1) For integers m = 1 and k,v = 0 put

rﬁ H U ('Yj+k)a m k - ]:[ U (7j+k)
isv i>v
jp'zm jp'z=m

(2) For a prime p and a positive integer m, denote by v,(m) the maximal in-
teger v such that p? divides m; let (m),. be the maximal divisor of m which is
prime to p, i.e. (m),, = m/p® where v = v,(m).

The following theorems summarize the basic properties of the series D,, 4.

THEOREM 2.3. (1) D, 441 = [G, D, ] [Shl, Proposition 1.2].
2) dpn i = 0 implies d,, , = 0 for every h > k.

Note that part (2) follows immediately from (1). Indeed,
Gk =0= Dy = Dpiy k= [G,Dimx] =[G, Dimy,i]

= D k41 = Dins1,k41 = G410 = 0,

which yields (2) by induction.

Let us now fix k = 0, and study the series {D,, }m= and the associated series
{dm,k}mal .

As indicated in [Sh2], these series are subject to various constraints, similar to
those derived in [Shl, Sec. 1] for k = 0, and in [Sh2, Sec. 4] for k = 1. Some re-
lated results for the case k = 0 were obtained independently by Leedham-Green and
Staszewski in {LS].

THEOREM 2.4. Suppose exp(yi41) = p¢, and let m = 1. Then
(1) If pe divides m, then D, ; = |G, Dy, 1; consequently, d,, , = 0 implies
Dm,k = 1.
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(2) If m is a power of p, then Dy, .y = [G,D,, ;] -Uy(D,, ); consequently
dp « = 0 implies D, = 1.

THEOREM 2.5. Suppose d,, , = 0 and let n = m. Then

1) Dy =Y, (Drnpp,k)-

(2) D7 < [G,Dy ], where v = v,(m).

(3) D, = D%, where v = v,(m).

@) (n), = (m), implies d, , = 0.

() dox=drppk-

We omit most proofs, as they are essentially identical to those given in [Sh1,Sh2]
for k =0,1. However, as part (5) of Theorem 2.5 for k = 0 is evidently stronger
than the parallel result given in [Sh1, Theorem 1.12], it requires a separate proof.
The proof which we now give relies on [Sc].

First observe that, if » is prime to p, then (n), = n = m = (m),.. Hence, by
part (4) we have d,, ; = 0, so (5) follows. Therefore we may assume n = pr, for
some positive integer r.

The idea is now to show that the map x ~ x? induces an epimorphism ¢:
D, ;/Dyyy g = Dy k /Dy, k- The fact that ¢ is well-defined follows directly from
P. Hall’s collection formula and the fact that {D,, s },.> is an N,-series (see [Sh1,
Theorem 1.12] for details). Furthermore, since d,, , = 0, we get by 2.5(1) D, =
U, (D, x). Hence, if ¢ is a homomorphism, it must be surjective. So we only have
to show that ¢ is a homomorphism.

Pick x,y € D, , and write

(x¥)? = xPy?mod U, (D;;) vp(D; ).

It is sufficient to show that the right-hand terms are contained in D), ;. Clearly,
Ui (D)) SU(Dyri) < Dypr i < Dppyy i, 50 We are left with the second term. So
consider the commutator of p typical factors in the definition of D, ;, namely

Ui (Vji4h)s - - Ui (1461, Where jip™, ..., j,pP=r.

We have to show that it lies in D,,,, ,. Lemma 1.2 of [Sc] may be applied in or-
der to express this commutator as a product of certain terms of the kind U;(y;).
Note that, since d, x = 0, we get by 2.52) Ypr+x = Dk < (G, Dpri] < Dy k-
Taking this into account, the result follows form [Sc, Lemma 1.2] by a straight-
forward calculation.

Theorem 2.5(3) provides us with shortened expressions for the groups D, 4,
provided some of the terms d,, , vanish. Perhaps the simplest phenomenon is
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ExaMpLE 2.6. Let m = ap*~', where a < p. Suppose d,, , = 0, and let n =
ap'~!, where i = a. Then, by Theorem 2.5(4), we have d, ; = 0. Applying 2.5(3)
we conclude that D, , = D7 {D = U;(y441)-

Although the following result deals with ordinary dimension subgroups D,,, its
proof is based on the properties of the more general series D,, .. We denote d,y ¢
by d,,. The value of d,, in a subgroup H of G will be denoted by d,,(H).

ProrosiTION 2.7. Let k > 1 and let H be a subgroup of G satisfying
(1) H= v,
@) H' < vr-
Let m be a positive integer with (m), < p. Then d,,(G) = 0 implies d,,(H) = 0.

Proor. Write m = ap’~!. If @ = 1 then D,, = 1 by 2.4(2), and the result is
clear. So assume a = 2. Note that d,, = 0 implies d,, , = 0 for all k£ = 0, by 2.3(2).
Example 2.6 now yields D,, ; = U;(yx4,) for all k. Clearly condition (2) implies
v (H) < ;44— for all j = 2. Substitution in Lazard’s formula for D, (H) gives
D,,(H) < U;(H)D, 4. But D, ;. = U;(v:) < U;(H) by condition (1). There-
fore D,,(H) < U;(H) < D,i(H) < D,,,,(H), so that D,,(H) = D,,,,(H) and
d,,(H) =0, as required. [ |

CoOROLLARY 2.8. Suppose (m), < p and d,, = 0. Let H be a subgroup of G
satisfying either

(1) H = {vy;,x) for some k > 1 and x € G,
or

(2) va-1 = H= .
Then d,,(H) = 0.

Since, assuming p > 2, d,(H) = 0 is equivalent to H being powerful, this result
generalizes [LM, Corollary 1.2(b)], stating that, for odd p, if G is powerful, and
for some k > 1 we have v,y < H < v, then H is powerful.

3. Proof of Theorems A and B

The following phenomenon, which is well known for regular p-groups, is proved
here in a different context.

LemMmA 3.1. Let m = ap®~! where a < p, and suppose d,, = 0. Then
[G,Ui(vi)] =Ui(yxy1) SJorallizaandk=1.

Proor. Consider first the case i = a. Since d,,, = 0, we must have d,,, , = 0 for
all k¥ = 0 (by Theorem 2.3(2)). Example 2.6 shows now that D,, ;, = U;(vy4+1) for
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all k. Applying Theorem 2.3(1) we conclude that [G,U;(v)] = [G,Dpy 1] =

D, = Ui(yrs1)-
The general case is now proved by replacing m with n = ap’~!, and observing
that d, = 0 (by Theorem 2.5(4)). [

This lemma extends similar results proved in [LM] for powerful p-groups.

We can now prove Theorem A.

So assume m = ap®~!, a < p, and d,, = 0. First observe that, since {D,,} is an
N,-series starting with G, it follows that U;) < D, for every i = 0. Hence it is suf-
ficient to verify that, for i = «, every element of D) is a p'th power. Replacing m
by n = mp‘~* if necessary, we may assume « = i. The proof is by induction on
|GJ|.

Obviously, we may assume that G is non-cyclic.

By Theorem 2.5(3) we have D,i = D;;"! = U;. So it remains to be shown that
every element in U, is of the form x” " for some x. By P. Hall’s collection formula

1) (xp)?" = x?'y?' mod U;(G’) T] Ui_, (v,7)-
r=1
Observe that
) 1 Ui (ypr) = D340,
r=1

Apply Theorem 2.5(2) to conclude that

3 D"V < [G,D,] = [G,U/].

But by Lemma 3.1 (with £ = 1) we have

@ (G, U] =Ui(G").
Combining (1)-(4) we obtain

Q) (xp)*" = x”'y?' mod U;(G").

It follows that, for every g in U;, there exists x in G such that

(6) g€ x?".U(G') <U(H) < D,i(H), where H=(G'x).

Now, H is a proper subgroup of G. Moreover, it clearly satisfies condition (1) of
Corollary 2.8. Hence the property d,, = 0 is inherited by H from G, i.e. d,,(H) =
0. By induction hypothesis for H, every element of D,:(H) is a p‘th power. In
particular, g = h?' for some h € H.
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This terminates the proof of Theorem A.

We now formulate Lemma 1.5 of [Sc], in the particular case required here. Ob-
serve that, since {D,,} is an N,-series, we clearly have y;(D,,) < Dq,,. It turns out
that, in certain circumstances, much more can be said.

LeEmMA 3.2 [Sc, Lemma 1.5]. Let m,s be positive integers with s = 2, Put n =
p("m/p? + (s — 1)m). Then v(D,,) < YsnD,.

Since 1 + p(s — 1) = s+ 1 for s = 2, we obtain
COROLLARY 3.3. Ifs=2and e, =1, then v;(Dy,) < D 1ym.

Let us now prove Theorem B.

The condition on the class of G ensures that y,, = 1 for m = (p — 1) p*. Since
m + 1is prime to p and v,,,,; = 1, it follows immediately from Lazard’s formula
that D,,,, = D,,4, i.e. d,,,; = 0. Applying Theorem 2.5(1) we conclude that

%) Dykrt = Uy (Dyk).

By Corollary 3.3 with m = p* and s = p — 1 we obtain
(8) Yp—1{Dpx) < Dpyr+1
(recall that p is odd). Combining (7) and (8) we get

) Yp—-1(Dpr) < Uy (Dpr).

Set H = Dp«. Then (9) implies d,_, (H) = 0. Therefore Theorem A may be ap-
plied, to conclude that

(10) Uiy (H) = (h*": h € H)
for all i > 0. As we have already noted, U, (G) < D,« = H. Hence
(11) Ui+ (G) = U,y (H).

The desired conclusion follows now from (10) and (11).

4. Proof of Theorem C

The proof of Theorem C rests on the study of the power-commutator structure
of free groups, with respect to their modular dimension subgroups D,,.

The following standard result, holding in arbitrary groups G, reflects the fact
that ®D,,/D,,, has the structure of a restricted Lie algebra over F),, induced by
the commutator and the pth power operations in G (see [Z] and [L] for details).
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Lemma 4.1. Letu € D,,, v;€ Dy, for 0 <i<s. Then
k
[u9v()p UTE '~’Us] = [[u,vo;pk],vl,.. -svs] (mOan+l)’
where n = m + ngp* + X3, n;.

Throughout the rest of this section, we will assume our reader is familiar with
P. Hall’s commutator collecting process, and with M, Hall’s theory of basic com-
mutators, as presented, for instance, in [H] or in [Sc].

From now on let F denote the free group on two generators x,y. Set D,, =
D, (F)and v, = vy,(F) (m,n=1).

LemmMa 4.2 [Sc, Lemma 2.3]. Let k be the exponent of the commutator {y,x, y;
p — 2] in P. Hall’s expansion of the product (xy)*. Then k = —1(mod p).

We also need the following fairly standard result (which may be established, e.g.,
using the method of [MW]).

LEMMA 4.3. The images in Y, on/Ymint1 Of the basic commutators in x,y of
partial weights m, n, respectively, form a basis for the free abelian group generated
by the images of all the commutators of partial weights m,n in Y, n/Ymins1-

We now turn to the main part of our analysis.
LemMaA 4.4 [Sc, Lemma 1.10]. Let u € D, \D,,,,. Then uf' e D,k \Dpicpyy.

The following description of a basis for D,,,/D,,,+; in terms of a basis for
D,,/D,,, is extremely useful for our purpose.

LemMma 4.5 [Sc, Lemma 1.11]. A set of representatives of a basis of
D,y /Dppyy is given by the union of the set of the basic commutators of weight
pm with the set of the pth powers of the representatives of a basis of D,,/Dy 1 1.

COROLLARY 4.6. The map x — x? induces an isomorphism p,,:D,,/Dp,,, —
me/'Ymepm+1 .

Proor. It is well known (see, e.g., [Shl], or the proof of Theorem 2.5 above)
that x — x? induces a well-defined map from D,,/D,1 t0 D,,,/Dppi1, SO p, is
the composition of this map with the canonical projection D,,,,/Dppiy = Dpm/
YpmDpm+1. Using P. Hall’s collection formula for (xy)” and Corollary 3.2 (with
s = p), we see that u,, is actually a homomorphism. Now, since the images in
Dy, /Dy of the basic commutators of weight pm generate v, Dpm+1/Dpma1, it
follows from Lemma 4.5 above that u,, maps any basis of D,,/D,,., to a basis of
Do/ YomDpm+1. Hence p,, is an isomorphism. s
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It is noteworthy that results 4.4-4.6 hold in fact for arbitrary free groups.

We now turn to the proof of Theorem C.

Let F be as before, and let G = F/Dpk+1,,.

G is clearly a finite p-group of class p**!
X, y) with their images in G. This will not cause confusion, since we are not going

. We will identify elements of F{e.g.,

to work in F any more.

Consider the element z = x?**"' y"’k+l € Up41(G) < D,yi+1(G). We claim that z
is not a pth power.

By way of contradiction, assume that z = w” for some w € G.

Then w? € D,k+1(G)\Dpr+1,,(G), so Lemma 4.4 (applied for F) easily im-
plies w € D« (G)\D,k,1(G).

Define G = G/v,x+1(G) = F/y,#+1Dpk+1,4, and use the "-notation consistently.

Set m = p*, and let u = p,, be the isomorphism from D,,/D,y; to D,/
YpmDpm+1 defined in Corollary 4.6. Then p may be identified, in a natural way,
with the map from D,«(G)/D,«4,(G) to D,«+1(G), induced by taking pth
powers.

Since p is a homomorphism, we clearly have

(EP 5P D1 (G)) = 27 57" = 2= u(WD k11 (G)

and by the injectivity of u, w = )'c”k)')”k(mod DpkH(C_i)), which implies w =
xP* y”k(mod D,«,,(G)). Since the value of w” depends only on the image of w in
D,x(G)/Dpx,1(G), this allows us to assume that w = x"ky”k.

Let us now apply P. Hall’s collection process in order to compute w¥.

Write w? = xP*"' y”k“P, where P is a product of basic commutators of weight
pin x”k, y”k (all the other factors are easily seen to be trivial). Among these there
is only one basic commutator of weight 1 in x”k, namely [ y”k,x”k, y”k; p—2],
and, by Lemma 4.2, it appears in this expansion with exponent —1.

Apply Lemma 4.1 to conclude that, in G,
[y7",x? 37" p = 2] = [y, x;:0"1,y;0%*" = 1].

All the other factors appearing in P may be written (using 4.1) as commutators of
total weight p**! in x and y, whose partial weight in x is at least 2p*.
Therefore, by Lemma 4.3,

(12) w? = xP* " yr [y, x; p*1,ys 0% = 1171Q

where Q is a product of basic commutators of total weight p**! in x and y, whose
partial weight in x is at least 2p*.
Equation (12) expresses w” (regarded as an element of Dj«+1/Dpyi+1yy =
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D,«+1(G)) in terms of a basis of the type given in Lemma 4.5. This expression is
unique, so, in particular, w? # x?*'yP**",

This contradiction concludes the proof of Theorem C.

ReMark. While this paper was written, R. Dark pointed out to the authors that
the example G of Theorem C can be obtained as a subgroup of the group of units
in the truncated free algebra on two noncommutative variables (see [HB, p. 265,
Exercise 3]). While Dark’s approach yields a shorter proof for Theorem C, our
method seems to give a somewhat deeper insight into the power-commutator struc-
ture of G.
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